C语言辨析——深入理解字符常量与表达式
1. 问题
今天看到一个题目,截图如下。
从答题情况来看,本题的答案是B,那么就意味着A、C、D是错的。但我认为这4个选项都是对的。当然,如果要从4个选项中挑选一个的话,那还是选择B妥当一些。
2. 分析
字符常量的定义:字符常量(Character constant)是由一对单引号括起来的一个字符序列,例如,'a'、'b'、'1'和 '\123' 等都是有效的字符常量。在大部分编译系统中,一个字符占一个字节,并使用ASCII码值表示字符。例如,字符'A'的ASCII码值为65,即用65表示字符'A'。
字符常量可以带有一个前缀,不带前缀的字符常量默认类型为int,这类字符常量称为整数字符常量。如果字符常量的前缀是L,则其类型为wchar_t;如果前缀是u,类型是char16_t( C11起);如果前缀为U,类型为char32_t( C11起)。wchar_t、char16_t和char32_t等类型的字符常量通称为宽字符常量。如果字符常量的前缀是u8,则其类型为char8_t(C23起),该类型与unsigned char相同。
在C标准中进一步对整数字符常量进行解释:对于单个字符的整型字符常量的值映射到文字编码中的单个值(注,在实现中一般采用ASCII码),其值是被映射字符在文字编码中表示为整数的数值。包含多个字符(例如’ab’)的整数字符常量的值,或者包含没有映射到文字编码中的单个值的字符或转义序列的值由实现定义。
以上内容均来自C标准。由C标准可知选项A的赋值语句是正确的,只是字符常量‘a+b'转换为int类型数时的值是由实现定义,减弱了程序的可移植性。
对于选项C和D,没有什么可说的,它们两个就是正确的赋值语句,对于C选项,字符常量’7‘和'9',它们的类型都是int,如果字符编码采用ASCII,它们的值分别是0x37和0x39,两者相加结果是0x70,0x70对于的字符是'p',因此,对于C选项,赋值语句执行后ch的值为字符'p'。
对于D选项,5+9等于14,如果字符编码采用ASCII,赋值语句执行后ch的值为14,对应ASCII中的一个控制字符,不可显示。
3. 结论
这道题目的四个选项都对。
参考文献:
[1]李红卫,李秉璋. C程序设计与训练(第四版)[M],大连,大连理工大学出版社,2023.
[2]https://pan.baidu.com/s/17ZXphwqySNIsIgcGtYMjvg?pwd=lhwc
相关文章:

C语言辨析——深入理解字符常量与表达式
1. 问题 今天看到一个题目,截图如下。 从答题情况来看,本题的答案是B,那么就意味着A、C、D是错的。但我认为这4个选项都是对的。当然,如果要从4个选项中挑选一个的话,那还是选择B妥当一些。 2. 分析 字符常量的定义…...

Springboot + websocket 实现 一对一 单人聊天
Springboot websocket 实现 一对一 单人聊天 要使用websocket ,需要添加 jar 打开项目中的pom.xml,添加以下内容 创建java端代码 配置websocke的endpoints 配置websocket的server ServerEndpoint(value "/websocket/{username}") 这句话 一定要注意, 这里 路…...
GEE机器学习——利用最短距离方法进行土地分类和精度评定
最短距离方法 最短距离方法(Minimum Distance)是一种常用的模式识别算法,用于计算样本之间的相似度或距离。该方法通过计算样本之间的欧氏距离或其他距离度量,来确定样本之间的相似程度或差异程度。 最短距离方法的具体步骤如下: 1. 数据准备:收集并准备用于训练的数据…...
数据结构时间复杂度与空间复杂度
文章目录 引入算法 1、时间复杂度1.概念2.大O渐进表示法3.常见时间复杂度计算举例 2、空间复杂度1.概念2.常见空间复杂度计算举例 引入 算法 算法就是一段能将一个物体从初始状态转换到某个目标转态的一个有限长序列方法的统称 算法效率:考虑一个方法是否好&…...

【计算机网络】内容整理
概述 分组交换 分组交换则采用存储转发(整个包必须到达路由器,然后才能在下一个链路上传输)技术。 在发送端,先把较长的报文划分成较短的、固定长度的数据段。 电路交换 在端系统间通信会话期间,预留了端系统间沿路径通信所需…...

【K12】Python写分类电阻问题的求解思路解析
分压电阻类电路问题python程序写法 一个灯泡的电阻是20Ω,正常工作的电压是8V,正常工作时通过它的电流是______A。现在把这个灯泡接到电压是9V的电源上,要使它正常工作,需要给它______联一个阻值为______的分压电阻。 解决思想 …...
数据库面经---10则
数据库范式有哪些: 第一范式(1NF): 数据表中的每一列都是不可分割的原子值。每一行数据在关系表中都有唯一标识,通常是通过主键来实现。第二范式(2NF): 满足第一范式。…...

深度学习基本介绍-李沐
目录 AI分类:模型分类:广告案例: bilibili视频链接:https://www.bilibili.com/video/BV1J54y187f9/?p2&spm_id_frompageDriver&vd_sourcee6a6e7fec41c59c846c142eb5ef1da0b AI分类: 模型分类: 图…...

【上分日记】第369场周赛(分类讨论 + 数学 + 前缀和)
文章目录 前言正文1.3000. 对角线最长的矩形的面积2.3001. 捕获黑皇后需要的最少移动次数3.3002. 移除后集合的最多元素数3.3003. 执行操作后的最大分割数量 总结尾序 前言 终于考完试了,考了四天,也耽搁了四天,这就赶紧来补这场周赛的题了&a…...
CMake Error at CMakeLists.txt:14 (project): The CMAKE_CXX_COMPILER:
报错 CMake Error at CMakeLists.txt:14 (project):The CMAKE_CXX_COMPILER:arm-none-eabi-g 解决办法1 Arm GNU Toolchain Downloads – Arm Developer x86_64 linux上: x86_64 Linux hosted cross toolchains AArch32 bare-metal target (arm-none-eabi)arm-g…...

Sqoop与其他数据采集工具的比较分析
比较Sqoop与其他数据采集工具是一个重要的话题,因为不同的工具在不同的情况下可能更适合。在本博客文章中,将深入比较Sqoop与其他数据采集工具,提供详细的示例代码和全面的内容,以帮助大家更好地了解它们之间的差异和优劣势。 Sq…...
Pandas实战100例 | 案例 31: 转换为分类数据
案例 31: 转换为分类数据 知识点讲解 在处理包含文本数据的 DataFrame 时,将文本列转换为分类数据类型通常是一个好主意。这可以提高性能并节省内存。Pandas 允许将列转换为 category 类型。 分类数据类型: category 类型适用于那些只包含有限数量不同值的列&…...
椋鸟C语言笔记#33:文件的顺序读写
萌新的学习笔记,写错了恳请斧正。 目录 光标(文件位置指示器) 文件的顺序读写 fgetc 使用实例 fputc 使用实例 fgets fputs 使用实例 fscanf fprintf fread fwrite 使用实例 光标(文件位置指示器) 我们…...

Transformer - Attention is all you need 论文阅读
虽然是跑路来NLP,但是还是立flag说要做个project,结果kaggle上的入门project给的例子用的是BERT,还提到这一方法属于transformer,所以大概率读完这一篇之后,会再看BERT的论文这个样子。 在李宏毅的NLP课程中多次提到了…...
安装配置Flink
安装配置Flink 1.上传安装包到Linux 2.解压到指定路径 tar -zxf ./flink-1.14.0-bin-scala_2.12.tgz /usr/local/src/3.修改环境变量 vi ~/.bashrc#往最后加入 export FLINK_HOME /usr/local/src/flink-1.14.0/ export PATH$PATH:$FLINK_HOME/bin#激活环境变量 source ~/.…...

解决Spss没有创建虚拟变量的选项的问题
这个是今天用spss想创建虚拟变量然后发现我的spss没有。 然后能怎么办我就百度呗, 说是在扩展里连接扩展中心 天哪,谁能连上,我连不上 于是就找到了从github上下载到本地,然后安装到spss中 目录 解决方法 点击code 再点击D…...

wxWidgets实战:使用mpWindow绘制阻抗曲线
选择模型时,需要查看model的谐振频率,因此需要根据s2p文件绘制一张阻抗曲线。 如下图所示: mpWindow 左侧使用mpWindow,右侧使用什么? wxFreeChart https://forums.wxwidgets.org/viewtopic.php?t44928 https://…...
深度学习15—(迁移学习)冻结和解冻神经网络模型的参数
冻结与解冻代码: def freeze_net(net):if not net:returnfor p in net.parameters():p.requires_grad Falsedef unfreeze_net(net):if not net:returnfor p in net.parameters():p.requires_grad True 这段代码定义了两个函数:freeze_net 和 unfree…...

强化学习应用(八):基于Q-learning的无人机物流路径规划研究(提供Python代码)
一、Q-learning简介 Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的…...
常见面试题之HTML
行内元素有哪些?块级元素有哪些? 空(void)元素有那些? HTML 中的行内元素(inline elements)通常用于在一行内显示,不会独占一行的空间。常见的行内元素有: <span>:用于对文本…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
深入理解Optional:处理空指针异常
1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...