当前位置: 首页 > news >正文

C语言辨析——深入理解字符常量与表达式

1. 问题

今天看到一个题目,截图如下。

图片

从答题情况来看,本题的答案是B,那么就意味着A、C、D是错的。但我认为这4个选项都是对的。当然,如果要从4个选项中挑选一个的话,那还是选择B妥当一些。

2. 分析

字符常量的定义:字符常量(Character constant)是由一对单引号括起来的一个字符序列,例如,'a'、'b'、'1'和 '\123' 等都是有效的字符常量。在大部分编译系统中,一个字符占一个字节,并使用ASCII码值表示字符。例如,字符'A'的ASCII码值为65,即用65表示字符'A'。

字符常量可以带有一个前缀,不带前缀的字符常量默认类型为int,这类字符常量称为整数字符常量。如果字符常量的前缀是L,则其类型为wchar_t;如果前缀是u,类型是char16_t C11起);如果前缀为U,类型为char32_t C11起)。wchar_tchar16_tchar32_t等类型的字符常量通称为宽字符常量。如果字符常量的前缀是u8,则其类型为char8_tC23起),该类型与unsigned char相同。

在C标准中进一步对整数字符常量进行解释:对于单个字符的整型字符常量的值映射到文字编码中的单个值(注,在实现中一般采用ASCII码),其值是被映射字符在文字编码中表示为整数的数值。包含多个字符(例如’ab’)的整数字符常量的值,或者包含没有映射到文字编码中的单个值的字符或转义序列的值由实现定义

以上内容均来自C标准。由C标准可知选项A的赋值语句是正确的,只是字符常量‘a+b'转换为int类型数时的值是由实现定义,减弱了程序的可移植性。

对于选项C和D,没有什么可说的,它们两个就是正确的赋值语句,对于C选项,字符常量’7‘和'9',它们的类型都是int,如果字符编码采用ASCII,它们的值分别是0x37和0x39,两者相加结果是0x70,0x70对于的字符是'p',因此,对于C选项,赋值语句执行后ch的值为字符'p'。

对于D选项,5+9等于14,如果字符编码采用ASCII,赋值语句执行后ch的值为14,对应ASCII中的一个控制字符,不可显示。

3. 结论

这道题目的四个选项都对。

参考文献:

[1]李红卫,李秉璋. C程序设计与训练(第四版)[M],大连,大连理工大学出版社,2023.

[2]https://pan.baidu.com/s/17ZXphwqySNIsIgcGtYMjvg?pwd=lhwc

相关文章:

C语言辨析——深入理解字符常量与表达式

1. 问题 今天看到一个题目,截图如下。 从答题情况来看,本题的答案是B,那么就意味着A、C、D是错的。但我认为这4个选项都是对的。当然,如果要从4个选项中挑选一个的话,那还是选择B妥当一些。 2. 分析 字符常量的定义…...

Springboot + websocket 实现 一对一 单人聊天

Springboot websocket 实现 一对一 单人聊天 要使用websocket ,需要添加 jar 打开项目中的pom.xml,添加以下内容 创建java端代码 配置websocke的endpoints 配置websocket的server ServerEndpoint(value "/websocket/{username}") 这句话 一定要注意, 这里 路…...

GEE机器学习——利用最短距离方法进行土地分类和精度评定

最短距离方法 最短距离方法(Minimum Distance)是一种常用的模式识别算法,用于计算样本之间的相似度或距离。该方法通过计算样本之间的欧氏距离或其他距离度量,来确定样本之间的相似程度或差异程度。 最短距离方法的具体步骤如下: 1. 数据准备:收集并准备用于训练的数据…...

数据结构时间复杂度与空间复杂度

文章目录 引入算法 1、时间复杂度1.概念2.大O渐进表示法3.常见时间复杂度计算举例 2、空间复杂度1.概念2.常见空间复杂度计算举例 引入 算法 算法就是一段能将一个物体从初始状态转换到某个目标转态的一个有限长序列方法的统称 算法效率:考虑一个方法是否好&…...

【计算机网络】内容整理

概述 分组交换 分组交换则采用存储转发(整个包必须到达路由器,然后才能在下一个链路上传输)技术。 在发送端,先把较长的报文划分成较短的、固定长度的数据段。 电路交换 在端系统间通信会话期间,预留了端系统间沿路径通信所需…...

【K12】Python写分类电阻问题的求解思路解析

分压电阻类电路问题python程序写法 一个灯泡的电阻是20Ω,正常工作的电压是8V,正常工作时通过它的电流是______A。现在把这个灯泡接到电压是9V的电源上,要使它正常工作,需要给它______联一个阻值为______的分压电阻。 解决思想 …...

数据库面经---10则

数据库范式有哪些:​​​​​​​ 第一范式(1NF): 数据表中的每一列都是不可分割的原子值。每一行数据在关系表中都有唯一标识,通常是通过主键来实现。第二范式(2NF): 满足第一范式。…...

深度学习基本介绍-李沐

目录 AI分类:模型分类:广告案例: bilibili视频链接:https://www.bilibili.com/video/BV1J54y187f9/?p2&spm_id_frompageDriver&vd_sourcee6a6e7fec41c59c846c142eb5ef1da0b AI分类: 模型分类: 图…...

【上分日记】第369场周赛(分类讨论 + 数学 + 前缀和)

文章目录 前言正文1.3000. 对角线最长的矩形的面积2.3001. 捕获黑皇后需要的最少移动次数3.3002. 移除后集合的最多元素数3.3003. 执行操作后的最大分割数量 总结尾序 前言 终于考完试了,考了四天,也耽搁了四天,这就赶紧来补这场周赛的题了&a…...

CMake Error at CMakeLists.txt:14 (project): The CMAKE_CXX_COMPILER:

报错 CMake Error at CMakeLists.txt:14 (project):The CMAKE_CXX_COMPILER:arm-none-eabi-g 解决办法1 Arm GNU Toolchain Downloads – Arm Developer x86_64 linux上: x86_64 Linux hosted cross toolchains AArch32 bare-metal target (arm-none-eabi)arm-g…...

Sqoop与其他数据采集工具的比较分析

比较Sqoop与其他数据采集工具是一个重要的话题,因为不同的工具在不同的情况下可能更适合。在本博客文章中,将深入比较Sqoop与其他数据采集工具,提供详细的示例代码和全面的内容,以帮助大家更好地了解它们之间的差异和优劣势。 Sq…...

Pandas实战100例 | 案例 31: 转换为分类数据

案例 31: 转换为分类数据 知识点讲解 在处理包含文本数据的 DataFrame 时,将文本列转换为分类数据类型通常是一个好主意。这可以提高性能并节省内存。Pandas 允许将列转换为 category 类型。 分类数据类型: category 类型适用于那些只包含有限数量不同值的列&…...

椋鸟C语言笔记#33:文件的顺序读写

萌新的学习笔记,写错了恳请斧正。 目录 光标(文件位置指示器) 文件的顺序读写 fgetc 使用实例 fputc 使用实例 fgets fputs 使用实例 fscanf fprintf fread fwrite 使用实例 光标(文件位置指示器) 我们…...

Transformer - Attention is all you need 论文阅读

虽然是跑路来NLP,但是还是立flag说要做个project,结果kaggle上的入门project给的例子用的是BERT,还提到这一方法属于transformer,所以大概率读完这一篇之后,会再看BERT的论文这个样子。 在李宏毅的NLP课程中多次提到了…...

安装配置Flink

安装配置Flink 1.上传安装包到Linux 2.解压到指定路径 tar -zxf ./flink-1.14.0-bin-scala_2.12.tgz /usr/local/src/3.修改环境变量 vi ~/.bashrc#往最后加入 export FLINK_HOME /usr/local/src/flink-1.14.0/ export PATH$PATH:$FLINK_HOME/bin#激活环境变量 source ~/.…...

解决Spss没有创建虚拟变量的选项的问题

这个是今天用spss想创建虚拟变量然后发现我的spss没有。 然后能怎么办我就百度呗, 说是在扩展里连接扩展中心 天哪,谁能连上,我连不上 于是就找到了从github上下载到本地,然后安装到spss中 目录 解决方法 点击code 再点击D…...

wxWidgets实战:使用mpWindow绘制阻抗曲线

选择模型时,需要查看model的谐振频率,因此需要根据s2p文件绘制一张阻抗曲线。 如下图所示: mpWindow 左侧使用mpWindow,右侧使用什么? wxFreeChart https://forums.wxwidgets.org/viewtopic.php?t44928 https://…...

深度学习15—(迁移学习)冻结和解冻神经网络模型的参数

冻结与解冻代码: def freeze_net(net):if not net:returnfor p in net.parameters():p.requires_grad Falsedef unfreeze_net(net):if not net:returnfor p in net.parameters():p.requires_grad True 这段代码定义了两个函数:freeze_net 和 unfree…...

强化学习应用(八):基于Q-learning的无人机物流路径规划研究(提供Python代码)

一、Q-learning简介 Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的…...

常见面试题之HTML

行内元素有哪些&#xff1f;块级元素有哪些&#xff1f; 空(void)元素有那些&#xff1f; HTML 中的行内元素&#xff08;inline elements&#xff09;通常用于在一行内显示&#xff0c;不会独占一行的空间。常见的行内元素有&#xff1a; <span>&#xff1a;用于对文本…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...