当前位置: 首页 > news >正文

缺省和重载。引用——初识c++

在这里插入图片描述
在这里插入图片描述

.

个人主页:晓风飞
专栏:数据结构|Linux|C语言
路漫漫其修远兮,吾将上下而求索


文章目录

  • C++输入&输出
  • cout 和cin
    • <<
    • >>
  • 缺省参数
    • 全缺省
    • 半缺省
      • 应用场景
      • 声明和定义分离的情况
  • 函数重载
    • 1.参数的类型不同
    • 2.参数的个数不同
    • 3.参数的顺序不同(本质还是类型不同)
  • C++支持函数重载的原理--名字修饰(name Mangling)
    • Linux编译器的命名规则
  • 引用
    • 引用概念
    • 引用特性
    • 引用的作用
      • 1.作为参数(输出型参数)
      • 2. 做返回值
      • 2.对象比较大,减少拷贝,提高效率
    • 指针和引用的区别


C++输入&输出

cout 和cin

在这里插入图片描述

<<

这里的c意思是console,把数据out到console(控制台)中去,而最后面的endl其实等价与\n,就是换行

在这里插入图片描述

>>

同样的道理cin,把数据in到console(控制台),也就是输入数据到控制台中。

在这里插入图片描述

1.使用cout标准输出对象(控制台)和cin标准输入对象(键盘)时,必须包含< iostream >头文件
以及按命名空间使用方法使用std。
2. cout和cin是全局的流对象,endl是特殊的C++符号,表示换行输出,他们都包含在包含< 
iostream >头文件中。
3. <<是流插入运算符,>>是流提取运算符。
4. 使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动控制格式。
C++的输入输出可以自动识别变量类型。
5. 实际上cout和cin分别是ostream和istream类型的对象,>>和<<也涉及运算符重载等知识,

缺省参数

缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时,如果没有指定实参则采用该形参的缺省值,否则使用指定的实参。

全缺省

#include<iostream>
using namespace::std;void Func(int a = 10 , int b = 20 , int c =30)
{cout << "a:" << a << endl;cout << "b:" << b << endl;cout << "c:" << c << endl << endl;
}int main()
{
// 没有传参时,使用参数的默认值
// 传参时,使用指定的实参Func(1,2,3);Func(1,2);Func(1);Func();return 0;
}

在这里插入图片描述

那么可不可以隔着一个数传参呢?答案是不能
在这里插入图片描述

半缺省

  1. 半缺省参数必须从右往左依次来给出,不能间隔着给
  2. 缺省参数不能在函数声明和定义中同时出现
#include<iostream>
using namespace::std;//半缺省参数从右往左依次给出
//半缺省参数不是缺少一半,而是有缺少就是半缺省
void Func(int a , int b = 20 , int c =30)
{cout << "a:" << a << endl;cout << "b:" << b << endl;cout << "c:" << c << endl << endl;
}int main()
{Func(1,2,3);Func(1,2);Func(1);return 0;
}

应用场景

假如我有一个栈,但是不知道要插入多少数据,目前栈的空间是固定的,怎么解决数据的容量问题?

struct stack
{int* a;int size;int capacity;
};void stackInit(stack* ps)
{//容量固定ps->a = (int*)malloc(sizeof(int) * 4);
}void StackPush(stack* ps,int x)
{
}int main()
{//不知道要插入多少个数据
}

用半缺省参数就可以很好的解决这个问题
在这里插入图片描述

声明和定义分离的情况

在声明和定义分离的情况下,那么是在声明处缺省,还是在定义处缺省呢?

//stack.h头文件下的定义
void stackInit(struct stack* ps, int n = 4);//stack.cpp下的声明
void stackInit(struct stack* ps, int n)
{ps->a = (int*)malloc(sizeof(int) * n);
}

应该在头文件下的定义处缺省,因为在运行时,要包含的是头文件,程序在编译的时候会展开头文件,这时候就可以进行缺省调用。而且在声明处还可以判断语法是否正确
如果在定义处缺省,那么在第3个情况下就会出现参数太少的报错情况,达不到缺省。

在这里插入图片描述

如果声名与定义位置同时出现缺省,恰巧两个位置提供的值不同,那编译器就无法确定到底该用那个缺省值。出现重定义报错

在这里插入图片描述

函数重载

c语言不允许同名函数
c++可以,要求,函数名可以相同,但是参数不同,构成函数重载 ,并且会对数据类型自动匹配。

1.参数的类型不同

在这里插入图片描述

2.参数的个数不同

在这里插入图片描述

3.参数的顺序不同(本质还是类型不同)

在这里插入图片描述
c语言不支持重载,链接时,直接用函数名去找地址,有同名函数,区分不开。
那么C++是怎么支持的呢?

C++支持函数重载的原理–名字修饰(name Mangling)

函数名修饰规则,名字中引入参数类型,各个编译器自己实现了一套

Linux编译器的命名规则

因为Linux的规则比较简单,我们先理解一下Linux编译器的规则
在这里插入图片描述
在这里插入图片描述
解释:如果是Add这样的前面就是_Z3,f就是_Z1,后面就都是加上函数名字和数据类型的首字母

正是用类似这样的规则给函数修饰名字,只要参数不同,修饰出来的名字就不一样,就支持了重载。这样链接的时候用这样的名字,就可以找到对应的函数地址

引用

引用概念

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空
间,它和它引用的变量共用同一块内存空间。
比如:李逵,在家称为"铁牛",江湖上人称"黑旋风"。

int main()
{int a = 0;//引用,b就是a的别名int& b = a;cout << &a << endl;cout << &b << endl;return 0;
}

在这里插入图片描述
注意:引用类型必须和引用实体是同种类型的

引用特性

  1. 引用在定义时必须初始化
    在这里插入图片描述
  2. 一个变量可以有多个引用
    在这里插入图片描述
  3. 引用一旦引用一个实体,再不能引用其他实体
    在这里插入图片描述
    4.引用不能改变指向
    在这里插入图片描述

引用的作用

1.作为参数(输出型参数)

//指针传参
void Swap(int* a, int* b)
{int tmp;tmp = *a;*a = *b;*b = tmp;
}//引用传参
void Swap(int &a , int &b)
{int tmp;tmp = a;a = b;b = tmp;
}int main()
{int x = 0, y = 1;Swap(&x, &y);cout << "x=" << x << endl;cout << "y=" << y << endl;Swap(x, y);cout << "x=" << x << endl;cout << "y=" << y << endl;
}

这里a相当于x的别名,y相当于b

在这里插入图片描述

typedef struct Node
{struct Node* next;struct Node* prev;
}LNode,*Pnode;void PushBack(Pnode& phead, int x);void PushBack(struct LNode** phead, int x);
void PushBack(struct LNode*& phead, int x);int main()
{Pnode plist = NULL;return 0;
}

这里*pnode 相当于struct Node*,Node相当于struct Node

2. 做返回值

int& func()
{int a = 0;return a;
}int main()
{int ret = func();return 0;
}

这段代码意味着返回a别名,但是由于栈帧销毁,会造成野引用,这里的值是不确定的,取决于编译器,以及是否清内存。
在这里插入图片描述
在这里插入图片描述

可以看到这里随便调用了一个函数就导致结果变化,因为fxfunc相同,空间重复使用,所以在原来销毁的a的位置创建了b,所以导致输出来的值又a的6,变成了b的1。

小结:

返回变量出了函数作用域,生命周期就到了要销毁(局部变量),不能引用返回

那么怎么使用引用返回呢?

int& func()
{static int a = 6;return a;
}int main()
{int &ret = func();cout << ret << endl;return 0;
}

这里加上一个static就可以。


int& Add(int a, int b)
{int c = a + b;return c;
}
int main()
{int& ret = Add(1, 2);Add(3, 4);cout << "Add(1, 2) is :"<< ret <<endl;return 0;
}

在这里插入图片描述

#include<iostream>
using namespace std; 
#include<assert.h>struct SeqList
{//成员变量int* a;int size;int cacpcity;//成员函数void Init(){a = (int*)malloc(sizeof(int) * 4);size = 0;cacpcity = 4;}void PushBack(int x){//... 扩容a[size++] = x;}//临时变量有常性//读写返回变量int& Get(int pos){assert(pos >= 0);assert(pos < size);return a[pos];}};int main()
{SeqList s;s.Init();s.PushBack(1);s.PushBack(2);s.PushBack(3);s.PushBack(4);for (int i = 0; i < s.size; i++){cout << s.Get(i) << "";}cout << endl;for (int i = 0; i < s.size; i++){if (s.Get(i) % 2 == 0){s.Get(i) *= 2;}}cout << endl;for (int i = 0; i < s.size; i++){cout << s.Get(i) << "";}}

2.对象比较大,减少拷贝,提高效率

以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。这些效果指针也可以,但是引用效率更高

#include<iostream>
using namespace std;
#include <time.h>
struct A{ int a[10000]; };
void TestFunc1(A a){}
void TestFunc2(A& a){}
void main()
{A a;// 以值作为函数参数size_t begin1 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc1(a);size_t end1 = clock();// 以引用作为函数参数size_t begin2 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc2(a);size_t end2 = clock();
// 分别计算两个函数运行结束后的时间cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}

在这里插入图片描述

指针和引用的区别

在这里插入图片描述

相关文章:

缺省和重载。引用——初识c++

. 个人主页&#xff1a;晓风飞 专栏&#xff1a;数据结构|Linux|C语言 路漫漫其修远兮&#xff0c;吾将上下而求索 文章目录 C输入&输出cout 和cin<<>> 缺省参数全缺省半缺省应用场景声明和定义分离的情况 函数重载1.参数的类型不同2.参数的个数不同3.参数的顺…...

java常用IO流功能——字符流和缓冲流概述

前言&#xff1a; 整理下学习笔记&#xff0c;打好基础&#xff0c;daydayup! 之前说了下了IO流的概念&#xff0c;并整理了字节流&#xff0c;有需要的可以看这篇 java常用应用程序编程接口&#xff08;API&#xff09;——IO流概述及字节流的使用 字符流 FileReader(文件字…...

Python中模块的定义、用法

在Python中&#xff0c;模块是一个包含了Python代码的文件。模块可以包含变量定义、函数、类等&#xff0c;并且可以在其他Python脚本中被导入和使用。模块的定义和用法如下所示&#xff1a; 模块的定义&#xff1a; 创建模块文件&#xff1a;在Python中&#xff0c;一个模块就…...

【vscode 常用扩展插件】

vscode 常用扩展插件 常用插件部分插件使用技巧1、eslint 保存自动格式化2、代码片段的使用3、最后是关于引入文件路径提示的 常用插件 记录vscode方便开发的扩展插件&#xff0c;方便换电脑时&#xff0c;快速部署所需环境。 部分插件 1、Auto Close Tag html自动闭合标签插…...

Retelling|Facebook2

录音 Facebook 2 Retelling|Facebook2 复述转写 Hi, Im Helen Campbell, from DJ interpretation, European Commission, Im going to talk about Facebook. You Im sure that you are more familiar with Facebook, a lot, a lot more familiar than I than me. But Ive read…...

读3dsr代码①测试

前置任务 首先是作者不公开checkpoints&#xff0c;需要自己训练一遍 这里先不载入模型单纯过一遍流程 而且因为没有说明是否需要去背景&#xff08;之后再过一下论文&#xff09;&#xff0c;所以反正先用去过背景的数据debug一下 3DSR/geo_utils.py:61: RuntimeWarning: inv…...

Vant Weapp小程序 van-uploader 文件上传点击无反应,删除无反应

Vant Weapp 1.0 版本开始支持van-uploader组件&#xff0c;请先确认好版本号和引用路径正确&#xff01;&#xff01; <van-uploader file-list"{{ fileList }}" deletable"{{ true }}" />1. 上传无反应 微信小程序用了van-uploader&#xff0c;但是…...

【力扣】55.跳跃游戏、45.跳跃游戏Ⅱ

55.跳跃游戏 给你一个非负整数数组 nums &#xff0c;你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标&#xff0c;如果可以&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&a…...

038—pandas 重采样线性插补

前言 在数据处理时&#xff0c;由于采集数据量有限&#xff0c;或者采集数据粒度过小&#xff0c;经常需要对数据重采样。在本例中&#xff0c;我们将实现一个类型超分辨率的操作。 思路&#xff1a; 首先将原始数据长度扩展为 3 倍&#xff0c;可以使用 loc[] 方法对索引扩…...

智慧工地源码 数字孪生可视化大屏 工地管理平台系统源码 多端展示(PC端、手机端、平板端)

智慧工地源码 数字孪生可视化大屏 工地管理平台系统源码 多端展示&#xff08;PC端、手机端、平板端&#xff09; 智慧工地系统多端展示&#xff08;PC端、手机端、平板端&#xff09;;数字孪生可视化大屏&#xff0c;一张图掌握项目整体情况;使用轻量化模型&#xff0c;部署三…...

深度学习Top10算法之深度神经网络DNN

深度神经网络&#xff08;Deep Neural Networks&#xff0c;DNN&#xff09;是人工神经网络&#xff08;Artificial Neural Networks&#xff0c;ANN&#xff09;的一种扩展。它们通过模仿人脑的工作原理来处理数据和创建模式&#xff0c;广泛应用于图像识别、语音识别、自然语…...

【智能算法】海马优化算法(SHO)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2022年&#xff0c;Zhao等人受到海马自然社会行为启发&#xff0c;提出了海马优化算法&#xff08;Sea-horse Optimizer, SHO&#xff09;。 2.算法原理 2.1算法思想 SHO模拟了海马群在自然界中的…...

AI大模型学习的伦理与社会影响

AI大模型学习 随着人工智能技术的快速发展&#xff0c;AI大模型学习成为当前热门研究领域之一。AI大模型学习是指基于大规模数据集和深度学习模型进行训练&#xff0c;以实现更高的准确性和复杂性。这些大模型已经在几乎所有领域都取得了显著的成就&#xff0c;包括自然语言处…...

记录些LangChain相关的知识

RAG的输出准确率 RAG的输出准确率 向量信息保留率 * 语义搜索准确率 * LLM准确率RAG的输出准确率由三个因素共同决定&#xff1a;向量信息保留率、语义搜索准确率以及LLM准确率。这三个因素是依次作用的&#xff0c;因此准确率实际上是它们的乘积。这意味着&#xff0c;任何一…...

C语言例4-7:格式字符f的使用例子

%f&#xff0c;实型&#xff0c;小数部分为6位 代码如下&#xff1a; //格式字符f的使用例子 #include<stdio.h> int main(void) {float f 123.456;double d1, d2;d11111111111111.111111111;d22222222222222.222222222;printf("%f,%12f,%12.2f,%-12.2f,%.2f\n&qu…...

[蓝桥杯 2019 省 A] 修改数组

题目链接 [蓝桥杯 2019 省 A] 修改数组 题目描述 给定一个长度为 N N N 的数组 A [ A 1 , A 2 , A 3 , . . . , A N ] A [A_1, A_2, A_3, ...,A_N] A[A1​,A2​,A3​,...,AN​]&#xff0c;数组中有可能有重复出现的整数。 现在小明要按以下方法将其修改为没有重复整数的…...

Git基础(25):Cherry Pick合并指定commit id的提交

文章目录 前言指定commit id合并使用TortoiseGit执行cherry-pick命令 前言 开发中&#xff0c;我们会存在多个分支开发的情况&#xff0c;比如dev&#xff0c;test, prod分支&#xff0c;dev分支在开发新功能&#xff0c;prod作为生产分支已发布。如果某个时候&#xff0c;我们…...

C语言结构体之位段

位段&#xff08;节约内存&#xff09;&#xff0c;和王者段位联想记忆 位段是为了节约内存的。刚好和结构体相反。 那么什么是位段呢&#xff1f;我们现引入情景&#xff1a;我么如果要记录一个人是男是女&#xff0c;用数字0 1表示。我们发现只要一个bit内存就可以完成我们想…...

2016年认证杯SPSSPRO杯数学建模D题(第二阶段)NBA是否有必要设立四分线全过程文档及程序

2016年认证杯SPSSPRO杯数学建模 D题 NBA是否有必要设立四分线 原题再现&#xff1a; NBA 联盟从 1946 年成立到今天&#xff0c;一路上经历过无数次规则上的变迁。有顺应民意、皆大欢喜的&#xff0c;比如 1973 年在技术统计中增加了抢断和盖帽数据&#xff1b;有应运而生、力…...

登录校验解决方案JWT

目录 &#x1f397;️1.JWT介绍 &#x1f39e;️2.应用场景 &#x1f39f;️3.结构组成 &#x1f3ab;4.JWT优点 &#x1f3a0;5.封装成通用方法 &#x1f6dd;6.JWT自动刷新 1.JWT介绍 官网&#xff1a;JWT官网 JSON Web Token (JWT) 是一个开放标准&#xff0c;它…...

Flutter开发进阶之瞧瞧BuildOwner

Flutter开发进阶之瞧瞧BuildOwner 上回说到关于Element Tree的构建还缺最后一块拼图&#xff0c;build的重要过程中会调用_element!.markNeedsBuild();&#xff0c;而markNeedsBuild会调用owner!.scheduleBuildFor(this);。 在Flutter框架中&#xff0c;BuildOwner负责管理构建…...

大量免费工具使用(提供api接口)

标题: 免费工具集使用 - 简化你的任务 介绍&#xff1a; 在数字化时代&#xff0c;我们经常需要使用各种工具来完成各种任务。本文将介绍一个免费工具集&#xff0c;它提供了多种实用工具&#xff0c;帮助简化你的任务。这些工具可以在网站 https://tool.kertennet.com 上找到…...

网络探测工具Nmap介绍

1. Nmap简介 Nmap是一款用于网络发现和安全审计的网络安全工具。可用于列举网络主机清单、管理服务升级调度、监控主机、监控主机服务运行状况、检测目标主机是否在线和端口开放情况、侦测运行的服务类型及版本信息、侦测操作系统与设备类型等。 2. 命令大纲 3. 命令详细介绍…...

20240319-2-机器学习基础面试题

⽼板给了你⼀个关于癌症检测的数据集&#xff0c;你构建了⼆分类器然后计算了准确率为 98%&#xff0c; 你是否对这个模型很满意&#xff1f;为什么&#xff1f;如果还不算理想&#xff0c;接下来该怎么做&#xff1f; 首先模型主要是找出患有癌症的患者&#xff0c;模型关注的…...

0202矩阵的运算-矩阵及其运算-线性代数

文章目录 一、矩阵的加法二、数与矩阵相乘三、矩阵与矩阵相乘四、矩阵的转置五、方阵的行列式结语 一、矩阵的加法 定义2 设有两个 m n m\times n mn橘子 A ( a i j ) 和 B ( b i j ) A(a_{ij})和B(b_{ij}) A(aij​)和B(bij​),那么矩阵A与B的和记为AB,规定为 A B ( a 11…...

python中的__dict__

类的__dict__返回的是&#xff1a;类的静态函数、类函数、普通函数、全局变量以及一些内置的属性都是放在类的__dict__里的&#xff0c; 而实例化对象的&#xff1a;__dict__中存储了一些类中__init__的一些属性值。 import的py文件 __dict__返回的是&#xff1a;__init__的…...

数学分析复习:无穷乘积

文章目录 无穷乘积定义&#xff1a;无穷乘积的收敛性命题&#xff1a;无穷乘积的Cauchy收敛准则正项级数和无穷乘积的联系 本篇文章适合个人复习翻阅&#xff0c;不建议新手入门使用 无穷乘积 设复数列 { a n } n ≥ 1 \{a_n\}_{n\geq 1} {an​}n≥1​&#xff0c;设对任意 …...

02 React 组件使用

import React, { useState } from react;// 定义一个简单的函数式组件 function Counter() {// 使用 useState hook 来创建一个状态变量 count&#xff0c;并提供修改该状态的函数 setCountconst [count, setCount] useState(0);// 在点击按钮时增加计数器的值const increment…...

你就是上帝

你就是上帝&#xff1a;Jv程序员&#xff0c;请你站在上帝或神的角度 1.万物皆有裂缝 按照西方文化&#xff08;宗教神话&#xff0c;古希腊、古罗马等&#xff09;&#xff0c;上帝创建了人&#xff1b; 创建人之前&#xff0c;还创建了人的居所或地盘/栖息地&#xff08;伊…...

Spring Cloud: openFegin使用

文章目录 一、OpenFeign简介二、Springboot集成OpenFeign1、引入依赖2、EnableFeignClients注解&#xff08;1&#xff09;应用&#xff08;2&#xff09;属性解析 3、 FeignClient&#xff08;1&#xff09;应用&#xff08;2&#xff09;属性解析&#xff08;3&#xff09;向…...